ORGANIC COMPOUNDS

Acta Cryst. (1996). C52, 1981-1983

($1 \alpha, 3 \alpha, 11 \alpha$)-2,2,11-Trimethyl-14-oxatetracyclo $\left[6.5 .0 .1^{7,11} .0^{3,8}\right]$ tetradec-6-ene-5,9-dione

V. Kabaleeswaran, ${ }^{a}$ S. S. Rajan, ${ }^{a}$ G. P. Kalena, ${ }^{b}$ P. Pradhan ${ }^{b}$ and A. Baneri ${ }^{b}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, and ${ }^{b}$ Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

(Received 17 August 1994; accepted 24 July 1995)

Abstract

The title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$, was prepared by the photolysis of 7-hydroxy-2-methyl-2-(4-methyl-3-pentenyl)-4-chromanone. The H 7 and H 9 atoms are in an α configuration. The cyclobutane ring is non-planar, the cyclohexenone ring has a half-chair conformation, the pyranone ring has a sofa conformation and the cycloheptanone ring has a boat conformation. The groups of atoms $\mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13, \mathrm{O} 14$ and $\mathrm{C} 12, \mathrm{C} 13, \mathrm{O} 14, \mathrm{C} 4$ are both planar.

Comment

The photolysis of 7-hydroxy-2-methyl-2-(4-methyl3 -pentenyl)-4-chromanone, (1), gave a new class of tetracyclic compound $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\right)$ as a crystalline photoproduct in 25% yield. Three possible structures, (2), (3) and (4), were considered for the photoproduct from the analysis of NMR, MS, IR and UV spectral data. The formation of (2) can be explained in terms of an intramolecular 1,2-arene-alkene photocycloaddition, while compounds (3) and (4) may be obtained by a 1,3-arene-alkene photocycloaddition. Detailed twodimensional NMR studies in conjunction with basecatalyzed deuterium-exchange experiments supported structure (2) as the structure of the photoadduct. The relative stereochemistry of (2) was established from the two-dimensional spectrum (Kalena, Pradhan \& Banerji, 1992). The X-ray investigation reported here provides independent confirmation of the structure of the photoproduct as ($1 \alpha, 3 \alpha, 11 \alpha$)-2,2,11-trimethyl-14-oxatetracyclo[6.5.0.1 $\left.1^{7,11} .0^{3,8}\right]$ tetradec-6-ene-5,9-dione, (2).
The title compound crystallizes in the centrosymmetric space group $C 2 / c$. The molecule has four asymmetric C atoms at $\mathrm{C} 1, \mathrm{C} 4, \mathrm{C} 7$ and C 9 , and Fig. 1 shows the molecule in the $1 R, 4 S, 7 S, 9 R$ conformation. Atoms H 7 and H 9 are in an α configuration, as expected from the spectral analysis (Kalena, Pradhan \& Banerji, 1992); the dihedral angles are $\mathrm{C} 13-\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7=-146$ (1) and $\mathrm{Cl} 3-\mathrm{Cl}-\mathrm{C} 9-\mathrm{H} 9=153(1)^{\circ}$. The bond lengths

[^0]Printed in Great Britain - all rights reserved

(2)

(3)
(4)

and angles around the tetrahedral C 1 atom deviate from normal tetrahedral values and this may be attributed to the fusion of the four rings.

The cyclohexenone ring A is in a half-chair conformation $\left(\Delta C_{2}=0.2^{\circ}\right)$ in the crystal (Duax, Weeks \& Rohrer, 1976). Atom O18 is displaced from the C11, C12, $\mathrm{C13}, \mathrm{Cl}$ plane by $-0.045 \AA$. Information on the stereodynamics of compound (2) in solution was obtained from high-resolution NMR studies at variable temperatures $(298 \rightarrow 233 \mathrm{~K})$. The multiplicity of the signal for atoms H 10 A and $\mathrm{H} 10 B$ at the diastereotopic C 10 atom ($\delta 2.35$) changed from an $A_{2} X$ doublet ($J_{\mathrm{AX}}=4.7 \mathrm{~Hz}$) at 298 K to an $A B X$ doublet-quartet ($J_{\mathrm{AB}}=18.2, J_{\mathrm{AX}}$ $=6.6$ and $J_{\mathrm{BX}}=2.2 \mathrm{~Hz}$) at low temperature $(233 \mathrm{~K})$. The multiplicity of atom H 9 also changed from triplet

Fig. 1. A perspective view of the title molecule. Displacement ellipsoids are plotted at the 30% probability level.
(at 293 K) to double doublet (at 233 K). This indicated rapid interconversion of the possible conformers of the cyclohexenone ring in solution at 298 K , resulting in the equivalency of the protons of the methylene group. This equivalency was lost at lower temperature when the molecule acquired an energetically stable conformation. This conformation presumably is the same as that observed by X-ray crystallography. The pyranone ring B is in a sofa conformation ($\Delta C_{s}=3.0^{\circ}$) and the cycloheptanone ring C is in a boat conformation ($\Delta C_{s}=$ 7.7°) (Bixon \& Lifson, 1967). The cyclobutane ring D is not planar. Spectral studies indicated that a nonplanar conformation of these rings is more favourable than a planar conformation (Rathjens, Freeman, Guinn \& Pitzer, 1953). The average $C-C$ bond length within the cyclobutane ring $[1.563(3) \AA$] is similar to values observed in other cyclobutane structures (Shirrell \& Williams, 1973). The average C-C-C bond angle of the cyclobutane ring is $89.1(1)^{\circ}$. Atom C8 is displaced by -0.38 (2) \AA from the C7, C1, C9 plane. The displacements of atoms H 7 and H 9 are 0.94 (2) and 0.90 (2) \AA, respectively. The dihedral angles $\mathrm{C} 11-\mathrm{Cl} 2-\mathrm{Cl} 3-$ $\mathrm{O} 14=179$ (2) and $\mathrm{C} 12-\mathrm{C} 13-\mathrm{O} 14-\mathrm{C} 4=178(2)^{\circ}$ show the planarity of these groups. The molecules in the unit cell are stabilized by van der Waals interactions.

Experimental

Crystals of ($1 \alpha, 3 \alpha, 11 \alpha$)-2,2,11-trimethyl-14-oxatetracyclo[6.5.0.1 ${ }^{7,11} .0^{3,8}$]tetradec-6-ene-5,9-dione were obtained from benzene. The density D_{m} was measured by flotation in $\mathrm{KBr} / \mathrm{H}_{2} \mathrm{O}$ solution.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$
$M_{r}=260.3$
Monoclinic
C2/c
$a=26.287(5) \AA$
$b=7.440(2) \AA$
$c=17.775$ (4) \AA
$\beta=127.64(2)^{\circ}$
$V=2753(1) \AA^{3}$
$Z=8$
$D_{x}=1.256 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.26$ (2) $\mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: empirical via ψ scan (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.96, T_{\text {max }}=0.99$
2598 measured reflections
2442 independent reflections
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=15-25^{\circ}$
$\mu=0.65 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
Needle
$0.28 \times 0.13 \times 0.10 \mathrm{~mm}$
White
?

1969 observed reflections

$$
[I>3 \sigma(I)]
$$

$R_{\text {int }}=0.03$
$\theta_{\text {max }}=70^{\circ}$
$h=-31 \rightarrow 31$
$k=0 \rightarrow 9$
$l=0 \rightarrow 21$
3 standard reflections monitored every 200 reflections intensity decay: 2%

Refinement

Refinement on F
$R=0.041$
$w R=0.051$
$S=0.75$
1969 reflections
172 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}(F)\right. \\
& \left.\quad+0.007231(F)^{2}\right] \\
& (\Delta / \sigma)_{\max }=0.03 \\
& \Delta \rho_{\max }=0.18 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \AA^{-3}
\end{aligned}
$$

Atomic scattering factors
from SHELXS86
(Sheldrick, 1985)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cl	0.3685 (1)	0.1302 (2)	0.4110 (1)	0.0339 (7)
C2	0.4075 (1)	-0.0155 (2)	0.4103 (1)	0.0384 (7)
C3	0.4148 (1)	0.0090 (2)	0.3332 (1)	0.0517 (9)
C4	0.3854 (1)	0.1830 (3)	0.2772 (1)	0.0497 (9)
C5	0.4233 (1)	0.3542 (2)	0.3320 (1)	0.0514 (9)
C6	0.4080 (1)	0.4372 (2)	0.3948 (1)	0.0450 (9)
C7	0.4134 (1)	0.3002 (2)	0.4617 (1)	0.0355 (7)
C8	0.3855 (1)	0.3252 (2)	0.5175 (1)	0.0429 (9)
C9	0.3567 (1)	0.1310 (2)	0.4857 (1)	0.0396 (8)
C10	0.2888 (1)	0.0904 (3)	0.4506 (1)	0.0501 (9)
C11	0.2363 (1)	0.1625 (2)	0.3527 (1)	0.0444 (9)
C12	0.2507 (1)	0.1889 (2)	0.2869 (1)	0.0385 (8)
C13	0.3102 (1)	0.1723 (2)	0.3122 (1)	0.0362 (8)
014	0.3193 (1)	0.1965 (2)	0.2459 (1)	0.0464 (7)
C15	0.4363 (1)	0.3450 (3)	0.6248 (1)	0.0637 (12)
C16	0.3367 (1)	0.4780 (3)	0.4801 (1)	0.0566 (10)
017	0.4334 (1)	-0.1343 (2)	0.4687 (1)	0.0560 (8)
018	0.1826 (1)	0.1898 (2)	0.3302 (1)	0.0631 (9)
C19	0.3768 (1)	0.1699 (4)	0.1840 (1)	0.0819 (15)

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cl}-\mathrm{C} 2$	1.497 (3)	C6-C7	1.506 (3)
$\mathrm{Cl}-\mathrm{C} 7$	1.583 (2)	C7-C8	1.564 (4)
$\mathrm{Cl}-\mathrm{C} 9$	1.537 (4)	C8-C9	1.568 (2)
$\mathrm{Cl}-\mathrm{Cl} 3$	1.498 (2)	C8-C15	1.527 (2)
C2-C3	1.507 (4)	C8-C16	1.529 (3)
C2-017	1.208 (2)	C9-C10	1.519 (4)
C3-C4	1.525 (2)	C10-C11	1.512 (2)
C4-C5	1.542 (2)	C11-C12	1.446 (4)
C4-O14	1.469 (4)	$\mathrm{C11-018}$	1.227 (4)
C4-C19	1.532 (3)	C12-C13	1.343 (4)
C5-C6	1.529 (4)	C13-014	1.350 (4)
C9-Cl-C13	114.2 (2)	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 8$	88.9 (1)
C7-C1-C13	111.9 (1)	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{Cl} 6$	114.0 (1)
C7-C1-C9	88.8 (1)	C7-C8-C15	114.4 (2)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 13$	110.9 (1)	C7-C8-C9	88.4 (1)
C2-C1-C9	120.7 (1)	C15-C8-C16	109.4 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	107.9 (2)	C9-C8-C16	115.9 (2)
$\mathrm{Cl}-\mathrm{C} 2-017$	123.5 (2)	C9-C8-C15	113.6 (1)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	112.8 (1)	$\mathrm{Cl}-\mathrm{C} 9-\mathrm{C} 8$	90.4 (1)
C3-C2--O17	123.5 (2)	C8-C9-C10	121.3 (2)
C2-C3-C4	113.7 (2)	$\mathrm{Cl}-\mathrm{C}-\mathrm{C} 10$	116.8 (1)
C3-C4-C19	109.5 (2)	C9-C10-C11	114.8 (2)
C3-C4-O14	108.4 (2)	$\mathrm{Cl0-C11-018}$	119.6 (2)
C3-C4-C5	114.5 (1)	$\mathrm{C} 10-\mathrm{Cl1-C12}$	118.2 (2)
O14-C4-C19	103.6 (2)	$\mathrm{C} 12-\mathrm{Cl1-018}$	122.1 (2)
C5-C4-C19	110.3 (2)	$\mathrm{Cl1-C12-C13}$	122.9 (2)
C5-C4-O14	109.9 (2)	$\mathrm{C} 1-\mathrm{C} 13-\mathrm{Cl} 2$	124.1 (2)
C4-C5-C6	116.0 (2)	$\mathrm{C} 12-\mathrm{Cl3-O14}$	119.1 (2)
C5-C6-C7	111.3 (1)	$\mathrm{Cl}-\mathrm{Cl} 3-\mathrm{O} 14$	116.8 (2)
$\mathrm{Cl}-\mathrm{C} 7-\mathrm{C} 6$	114.4 (1)	$\mathrm{C} 4-\mathrm{Ol4-C13}$	117.3 (2)
C6-C7-C8	124.5 (1)		

Data were corrected for Lorentz-polarization and absorption effects. The structure was solved by direct methods. H atoms were obtained from a ΔF map and refined isotropically in a separate block. Programs used were SHELXS86 (Sheldrick,
1985), SHELX76 (Sheldrick, 1976) and PARST (Nardelli, 1983). Calculations were performed using a MicroVAX II computer.

The authors thank Professor Vasantha Pattabhi for disscussions and one of us (VK) thanks the University of Madras for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: SZ1027). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bixon, M. \& Lifson, S. (1967). Tetrahedron, 23, 769-784.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Elliel \& N. Allinger, pp. 271-383. New York: John Wiley.
Kalena, G. P., Pradhan, P. \& Banerji, A. (1992). Tetrahedron, 33, 7775-7778.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rathjens, W. G., Freeman, N. K., Guinn, W. D. \& Pitzer, K. S. (1953). J. Am. Chem. Soc. 75, 5634-5642.

Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Shirrell, C. D. \& Williams, D. E. (1973). Acta Cryst. B29, 1648-1653.

Acta Cryst. (1996). C52, 1983-1985

A Tetralin Derivative

V. Kabaleeswaran, ${ }^{a}$ S. S. Rajan, ${ }^{a}$ S. Janarthanam ${ }^{b}$ and K. Rajagopalan ${ }^{b}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras 600 025, India, and
${ }^{b}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Madras 600 025, India
(Received 3 March 1995; accepted 18 July 1995)

Abstract

In the structure of 1-hydroxy-1-propynyl-1,2,3,4-tetra-hydronaphthalene-2-spiro-(2^{\prime}-cyclohexen- 4^{\prime}-one), $\mathrm{C}_{18}{ }^{-}$ $\mathrm{H}_{18} \mathrm{O}_{2}$, the $\mathrm{C}_{s p^{2}}$ atom at the spiro junction (axial) is trans to the propargyl chain (pseudo-axial). The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The structure determination of the title compound, (2), is a continuation of our studies in tin-mediated vinyl
radical cyclization of similarly substituted substrates (Janarthanam, Balakumar \& Rajagopalan, 1994). Our efforts were directed towards the synthesis of compound (3) as a model for Retigeranic acid-type molecules (Janarthanam, Shanmugam \& Rajagopalan, 1993).

In the scheme above, the stereochemistry at C 1 [carbonyl in starting material (1)] is fixed by the fact that the introduction of the three-carbon unit is a stereo-electronically controlled step. During the radical cyclization, i.e. (2) \rightarrow (3), a new stereocenter is generated at atom $\mathrm{C} 4^{\prime}$. As the stereochemistry at C 1 is fixed, the extent of stereocontrol obtainable at $\mathrm{C4}^{\prime}$ becomes amenable for study. Thus, the treatment of compound (1) with propargyl sesquialuminium bromide in tetrahydrofuran at 195 K for 3 h gave compound (2) as a mixture of diastereomers in the ratio 90:10. It was of interest to establish the stereochemistry of the major diastereomer with regard to the orientation of the propargyl chain and the enone moiety. The present study reports the X-ray crystallographic investigation of this orientation, as well as the conformation of the partially unsaturated rings.
The central ring adopts a sofa conformation ($\Delta C_{2}=$ 7.2°) and the enone ring adopts a half-chair conformation ($\Delta C_{s}=8.2^{\circ}$) (Duax, Weeks \& Rohrer, 1976). The bond lengths and angles agree with those of similar systems (Nethaji, 1987; Geetha \& Rajan, 1991). The $s p^{2}$ $\mathrm{C} 4^{\prime}$ atom at the spiro junction (axial) is trans to the propargyl chain (pseudo-axial).

The molecular packing in the unit cell involves $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 4$ hydrogen bonding [$\mathrm{O} 1 \cdots \mathrm{O} 4(-x,-y+1$, $-z+2$) 2.905 (2), $\mathrm{H} \cdots \mathrm{O} 42.06$ (3) \AA and $\mathrm{O} 1-\mathrm{H} \cdots \mathrm{O} 4$ $\left.155(3)^{\circ}\right]$.

Fig. 1. A perspective diagram of the title compound with ellipsoids plotted at the 30% probability level.

[^0]: (c) 1996 International Union of Crystallography

